
A Novel Topic-level Random Walk Framework
for Scene Image Co-Segmentation

Zehuan Yuan1, Tong Lu1∗, and Palaiahnakote Shivakumara2

1 National Key Laboratory of Software Novel Technology, Nanjing University, China
2 Faculty of Computer Science and Information Technology, University of Malaya

Abstract. Image co-segmentation is popular with its ability to detour
supervisory data by exploiting the common information in multiple im-
ages. In this paper, we aim at a more challenging branch called scene
image co-segmentation, which jointly segments multiple images captured
from the same scene into regions corresponding to their respective class-
es. We first put forward a novel representation named Visual Relation
Network (VRN) to organize multiple segments, and then search for mean-
ingful segments for every image through voting on the network. Scalable
topic-level random walk is then used to solve the voting problem. Ex-
periments on the benchmark MSRC-v2, the more difficult LabelMe and
SUN datasets show the superiority over the state-of-the-art methods.
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1 Introduction

As one of the recent developments in computer vision, image co-segmentation
has attracted the interest of researchers [10][7][16] [14][11][17][18][4][13][8] in the
past years with its ability to remedy the loss of supervisory data by utilizing
enhanced cues from co-occurring objects. However, although promising results
have been achieved, most of them still face difficulties when dealing with scene
images due to large intra-class variability and complex scene structures.

In this paper, we simultaneously analyze multiple images from the same
scene and decompose each complex scene image into disjoint but meaningful
segments with each corresponding to an instance of a scene object class (e.g., tree
and car). We propose a fully automatic co-segmentation method that exploits
both the appearance consistency of the same class and the spatial scene context
constraints of different classes. The core of our method is to derive a directed
flowing-graph named Visual Relation Network (VRN) (Sec.3) to characterize
”soup of segments” [19] and their relations. In VRN, each node corresponds to
an image segment and its latent class label is indicated by the state variable of
the node. The statement of the flowing-graph means that the weight of any edge
varies over the state variables of its linked nodes, like a valve controlling the
water volume flowing from the starting point to the end. VRN thus succeeds in
modeling both the appearance similarity and the spatial scene context relations
between every two segments on class level by the form of adjustable weights. Note
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that compared to bad segments, meaningful segments are believed to have strong
intra-class appearance consistencies and spatial inter-class context relations with
other segments. Thus they are actually the hubs of the graph with more water
flowing into them. Thereby, co-segmentation from multiple scene images can be
formulated as voting on a large-scale network. That is, by considering ”topics”
as ”classes”, we address co-segmentation by a topic-level random walk algorithm
(Sec.4) on the flowing-graph to search for the meaningful segments that have high
ranking scores. To achieve this, we use the greedy strategy (Sec.5) to search for
the optimized segment combination from the selected meaningful segments. The
overview of the entire framework is shown in Fig. 1. Note that since scene spatial
context is unknown in advance, we thereby adopt a recursive way to alternate
co-segmentation and learning stable spatial scene context (Sec.6).

Fig. 1. The overview of the proposed method. The directed edges (blue arrow) in
VRN model either the appearance similarity or the class-level spatial context relation
between two segments (red circle).

Our main contributions include 1) the introduction of stable scene context
into scene image co-segmentation, and 2) a new framework consisting of the VRN
representation and the topic-level random walk on it to address the problem.
Although topic-level random walk is familiar in mining social networks [26], it is
novel for image co-segmentation to the best of our knowledge. According to the
experiments on LabelMe [20] and SUN [1], we have averagely 10% improvement
over the state-of-the-art methods. Moreover, the proposed VRN is sparse with
few hubs [9] and thus is efficient for large scene datasets compared to popular
pixel-label methods.

2 Related work

There are two branches towards image co-segmentation: two-class co-segmentation
and multi-class co-segmentation. Two-class image co-segmentation aims to di-
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vide every image into foreground or background regions with the former corre-
sponding to objects. For comparison, multi-class image co-segmentation mainly
focuses on the images consisting of many instances of different classes.

2.1 Two-class co-segmentation

The key step in these methods is to construct a proper appearance model to
distinguish the two classes directly and robustly. Then it will be relatively easy
to perform pixel-level labeling by using techniques like energy minimization.
These methods are very different from each other in their selected features, such
as color histogram [16], texture features [14], Garbos filters [6], stereo cues [11],
objectness [24], and visual saliency [17].

To further propagate segmentation masks of common objects to different im-
ages, visually matching techniques across images have been introduced, typically
consisting of region-level matching [18][4] and pixel-level correspondence [17]. [2]
additionally models the shape of foreground objects explicitly by shape tem-
plates, thus getting better co-segmentation results by sharing shape templates
among multiple foreground object instances. Recently, [25] further establishes
consistent functional maps between two images in an reduced functional space
to assist image co-segmentation. However, two-class co-segmentation algorithms
can not be applied into the images that have many instances of different classes.

2.2 Multi-class image co-segmentation

As an extension to two-class co-segmentation, researchers have explored multi-
class co-segmentation [10][7][13][8] recently. For example, [10] over-segments ev-
ery image into multiple regions and labels each region under an combinatorial
auction optimization framework. [7] converts the multi-class co-segmentation in-
to the combination of spectral clustering and discriminative clustering, which
well maintains the spatial structure of each image and the distinction among
different classes. However, these methods only make use of the appearance con-
sistency of one class across images. Actually, there also exists stable scene context
across images that can be used for co-segmentation.

3 The proposed VRN

We introduce the construction of VRN in this section. Essentially, VRN is a
weighted directed graph (V,E,W ) with V as its vertex set, E as its edge set,
and W as the edge weight set. Node ai represents the i-th segment in the ”soup
of segments” of image a. For any image, we adopt the same strategy as [19] to
obtain its ”soup of segments”, namely, we perform multiple rounds of graph-cut
segmentation with a different parameter setting in each round. In addition, we
add category-independent object proposals [3] into the soup to ensure meaningful
segments of objects can be included into the soup. Note that we assume there is
at least one meaningful segment in the soup for every class in the image.
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A segment is described by the following two aspects: 1) appearance A that is
characterized by pHOG, color distribution and texton distribution, and 2) class
variable t belonging to {1, 2 · · · , T} and its distribution P that describes the
probability of the segment belonging to one class in {1, 2 · · · , T}. The unsuper-
vised category discovery method [19] is used to initialize the distribution of every
segment over different classes and cluster all the segments by Latent Dirichlet
allocation (LDA). It encourages the segments in the same cluster to manifest
similar appearance. Class label is initialized by t = argmaxc P (c). Edges will
then be created between segments either from different images or inside the same
image. See the example VRN in Fig. 2(a).

Fig. 2. An example VRN. (a) The VRN example, where three different object classes
consisting of building, sky and car are denoted by class 1, 2 and 3, respectively. (b)
Class-level weight vectors, in which the 9 elements respectively correspond to class
pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3). Note that for an edge
between two pure segments, there is a significant peak in the weight vector compared
to a flat distribution between mixed segments.

3.1 Edge construction across images

It is observed that meaningful segments tend to have consistent matches and
thus we encourage the segments of similar appearance to be linked. Specifically,
for each VRN node ai, we first search for its K-nearest neighbors from ”soups
of segments” of other scene images by defining the following similarity measure
S between two segments ai and bj :

S(ai, bj) =
1

| c |
∑
c

Kχ2(Ac(ai), Ac(bj)) (1)

where Ac denotes the cth type of appearance features consisting of pHOG, texton
and color, and Kχ2(·, ·) is a χ2 kernel function. Generally, two visually similar
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segments are more likely to belong to the same class, while the segments of
different classes have dissimilar visual appearances. Note that no shape features
are adopted to measure the similarity between two segments since the segment of
an object may be a union of smaller ones due to over-segmentation or occlusion,
and most importantly, many scene stuffs even have no explicit shapes.

Finally, let {bkj }
k=1,··· ,K
b ̸=a denote the K-nearest neighbors of ai, a similarity

edge connecting ai and bj will be created, namely, the edge ai → bj as shown in
Fig. 2(a) with its weight initialized as S(ai, bj).

3.2 VRN construction inside an image

We hypothesize that two segments in one image should be connected if there
exists a class-level spatial context relation or a part-of relation.

Establishing part-of edges As known, it is difficult to distinguish a part and
the entire object without any semantic information. For instance, the building
in Fig. 2(a) may be over-segmented and it is easy to consider any small segment
as an independent meaningful object. Based on Gestalt Principles, we are prone
to reserve the larger segments. Thereby, we define there exists a part-of relation
between two segments if one segment belongs to another one. For this case
we add an edge to link them. That is, given two segments ai and aj with an
overlapped scale

ai∩aj

min(ai,aj)
> 0.95, we add a directed edge (ai, aj) if the segment

ai is smaller, otherwise (aj , ai) is added. The weight of a part-of edge is fixed as
τ = 0.52.

Inter-class spatial context The inter-class spatial context represents that the
instances of different classes in a scene have a roughly stable spatial layout. We
take a street scene as an example and assume there exist instances of class 1, class
2 and class 3 which correspond to ”pedestrian”, ”road” and ”sky”, respectively.
The instances of class 1 always walk on the instances of class 2, and similarly
the instances of class 3 will be above on all the instances of the rest two classes
in this scene. However, due to perspective deformation, 3D spatial context of a
scene manifests in a diverse way in 2D image space. In our method, we classify
2D inter-class spatial context into different clusters. In another word, the images
that have similar spatial structures are grouped into the same cluster, and thus
the inter-class spatial context for each cluster are consistent and stable. Each
image has a cluster label that corresponds to the group it exists. Specifically,
we first extract the global Gist feature [15] to represent its spatial structure
for every image. Then the hierarchical agglomerative clustering is used since it
chooses the number of clusters in an automatical way. Fig. 3 shows a tree view
example of clusters, where the images that have visually similar elements and
layout are categorized into the same cluster.

For each cluster c, we use image-dependent location probability maps [5] to
model its inter-class spatial context. A map M c

tj |ti(·, ·) corresponds to the class
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Fig. 3. A hierarchical tree view example after clustering. Example images and their
corresponding Gist features are shown for each cluster.

pair (tj , ti) that models the preference of tj at any relative location to pixel
of ti. For example, M c

tj |ti(x, y) encodes the probability of the pixel with (x, y)

deviation to anyone pixel of ti belonging to tj .

Establishing context edges Based on the learned inter-class spatial context
model, context edges are added to include the inter-class spatial constraints be-
tween two segments in an image. Note that the strength of an edge is a function
over the class variables of its linked segments. Specifically, given two segments
ai and aj with the overlapped scale

ai∩aj

ai∪aj
< 0.05, we add two directed edges

(ai, aj) and (aj , ai) into E. With each element corresponding to a class pair, the
weight of (ai, aj) is a class-level vector c(ti, tj) indicating the strength of spatial
relation if ai and aj are equal to ti and tj , respectively:

c(ti, tj) =
p(ti|ai)
| ai || aj |

∑
(x,y)∈ai

(x∗,y∗)∈aj

M c
tj |ti(x

∗ − x, y∗ − y) (2)

where | ai | and | aj | are the number of pixels in ai and aj , respectively. p(ti|ai)
is the probability of ai under class ti, and M c

tj |ti(·, ·) is the relative location

map of tj given ti in the cluster c of a. Note that the weight of (aj , ai) may
not be the same as that of (ai, aj) because of different relative location maps.
Note that for an edge between two pure segments, there is a significant peak in
the weight vector compared to a flat distribution between mixed segments (See
Fig. 2(b)). This can be utilized by our topic-level random walk later to search
for meaningful segments.
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4 Topic-level random walk on VRN

After initializing all the nodes and the edges in VRN, it is observed that mean-
ingful segments perform the role of hubs to which many other nodes are directed.
Thus we consider the weight of every directed edge as a vote from the starting
segment to the ending one. Since the weight of a context edge is a function of class
variables, we adopt a topic-level random walk method to improve the ranking
quality by integrating class-level spatial context.

Specifically, given a node ai, we introduce a ranking score vector {r[ai, t]t=1,··· ,T }
to represent the importance of ai under class t, rather than a simple important
value used in Pagerank. Votes are then derived from either the linked segments
in the same image a or those from other scene images b. The vote of a similarity
edge is essentially intra-class. That is, for an edge (ai, bj), ai only votes r[ai, t]
to r[bj , t]. However, for a context edge (ai, aj), the vote is inter-class. If ai and aj
respectively have strong spatial relations under classes ti and tj , namely c(ti, tj)
is large, ai votes r[ai, ti] to r[bj , tj ]. This encourages meaningful segments to
have a higher ranking score under its correct class label. The vote of a part-of
edge is not class-level because we prefer to the larger regions regardless of their
classes. Mathematically, the topic-level ranking score of ai under class t can be
recursively defined by:

r(ai, t) = ε
p(t|ai)
| V |

+ (1− ε)
(
κ

∑
(bj ,ai)∈E

r(bj , t)wbjai
+

(1− κ)
∑

(aj ,ai)∈E

V (aj , ai, t)
)

V (aj , ai, t) =
{∑

tj
τr(aj , tj) (aj , ai)is Part of∑

tj
cajai(tj , t)r(aj , tj) Otherwise

(3)

where ε is the damping factor and is set by a typical value 0.15. κ represents the
balance factor between two types of edges. wbjai is the normalized appearance
similarity measure S(ai, bj) and E represents all the edges in VRN. Intuitively,
a VRN node with a relatively high ranking score is much likely to connect with
the VRN nodes that also have high ranking scores.

The proposed topic-level random walk can be further reduced into a simple
Pagerank representation. The details are included in the supplementary material.
Accordingly, the iterative definition of topic-level random walk is promised to
converge theoretically. The inference of r[·, t] of any node in VRN can thus be
addressed by the Power method used for Pagerank.

5 Segments selection and class inference

A meaningful segment in general has a relatively high ranking score. To search
for meaningful segments from any scene image a, we adopt a greedy algorithm
and the details are shown in Tab. 1. Since every segment has an importance
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vector, we calculate its overall importance. One segment with a high overall
importance is considered more important. Note that we infer the class label for
any selected segment ai by t = argmax r(ai, t).

Table 1. The greedy algorithm to choose meaningful segments.

input: Image set D and all the candidate segments S
Output: The selected segments for every image in D

For any image a in D
(1) Calculate the overall score roverall of a segment ai and assign a class label t to it by

t = argmax r(ai, t),ma = 1
|T |

∑
t r(ai, t), va = 1

|T |
∑

t(r(ai, t)−ma)
2,

roverall = va ∗max r(ai, t);
(2) Sort all {ai}i=1,··· ,Sa by roverall and initialize the selected segments set segC = [];
(3) Select ai in the descending order of roverall;

(4) For aj ∈ segC calculate Overlap =
ai∩aj

ai∪aj
, if Overlap > 0.1 return (3);

(5) Add ai into segC, if
∪

segC < 0.9 ∗ imagesize of a, return (3).
End

6 Iterative scene image co-segmentation using VRN

After constructing VRN, we adopt an iterative strategy to perform co-segmentation
and update scene spatial context. It will converge to an optimal solution when
scene spatial context are stable. The overall framework is as follows:

1. Initialization-step: Initialize the VRN representation as introduced in Sec.
3.

2. Iteration-step: Search for meaningful segments for every image iteratively:
(a) Use topic-level random walk on the VRN to calculate ranking scores of

all the nodes in it;
(b) Select meaningful segments and infer their class variables in every scene

image;
(c) Calculate a new VRN representation by updating the inter-class spatial

context for every cluster and the class distribution associated to each
node.

In this stage, the context edges should only be recalculated based on the new
inter-class context model. Therefore, we first update inter-class spatial context
for each scene cluster according to the selected segments and their class labels.
That is, we need update a lot of relative location maps by recalculating M c

t2|t1
between any two classes of t2 and t1 for each cluster c. Note that only the images
with the cluster label c are used to update M c

(·,·). Specifically, given a pixel p1 of

the class t1, M c
t2|t1(u, v) counts the ratio of pixels p2 at the offset (u, v) to any p1
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of the class t1 belonging to t2. The map M c
t2|t1(u, v) is maintained in normalized

image coordinates (u, v) ∈ [−1, 1] × [−1, 1]. We also have
∑

t2 M
c
t2|t1(u, v) = 1

so that M c
t2|t1 represents a proper conditional probability distribution over the

class t1. See details in [5].

Next, for a segment ai in V of VRN, we update its class distribution by

p(ti|ai) =
r(ai, ti)∑
t r(ai, t)

(4)

Accordingly, we have a new class distribution for every segment to construct a
new VRN as in Sec. 3.

7 Experiments and discussions

7.1 Experimental settings

We employ the normalized cuts algorithm [21] to generate the ”soup of segments”
of every image in a scene. Specifically, we vary the segment number from 3 to 12
and accordingly run the algorithm 10 times. The top 10 object proposals are also
added into the soup using [3]. Thus totally 85 segment candidates are obtained
for every scene image in our dataset. We then use the algorithm [19] to initialize
the class distribution for each candidate segment. The appearance characteristic
A of each segment includes three types of Bag-of-features histograms: Texton
Histograms (TH), Color Histograms (CH), and pyramid of HOG (pHOG). We
generate these histograms in the same way as [12]. κ is a weight to balance the
importance of context and appearance in topic-level random walk, which is fixed
as κ = 0.65 because we find κ and τ are unsensitive to specific scenes as long as
the scenes have stable context. Thereby, we get their respective optimal values
by a simple validation set.

7.2 Datasets

We evaluate our method on three datasets: MSRC-v2 [22], LabelMe [20] and
SUN [1]. MSRC-v2 has altogether 21-classes (591 images). We pick up the images
that have more than 3 classes for testing and thus form a subset (380 images)
consisting of 13 classes. The images from LabelMe and SUN are collected from
realistic daily life scenes. We choose six scenes: office (180 images) (LabelMe),
movie theater (32 images) (LabelMe), bathroom (350 images) (LabelMe) and
bedroom (307 images) (LabelMe), static street scene (400 images) (SUN) and
outdoor (137 images) (SUN), with each scene category consisting of more than
five object classes. We normalize all the images from LabelMe and SUN into
256× 256 to avoid scale variations. Note that all the images in our dataset have
pixel-level ground-truth labels.
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7.3 Evaluation

Firstly, we adopt the segmentation accuracy to quantitatively evaluate our re-
sults. For each class, we denote the ground-truth segments and the obtained
segments with G and C , respectively. Then the segmentation accuracy can be
defined as the ratio of the intersection of G and C to the union of them, name-
ly G∩C

G∪C . Besides, purity score [23] is also adopted to measure the coherency of
class labeling of our method over the entire dataset. For each selected segment,
its ground-truth class label is the one that the majority of pixels in it belong
to. Note that different class labels may be potentially assigned to the selected
segments with the same ground-truth class label in different images.

7.4 Scene co-segmentation results

Segmentation accuracy on MSRC-v2 For each image, we search for mean-
ingful scene segments from its 85 segment candidates. Eight examples of four
scenes in our subset of MSRC-v2 are illustrated in Fig. 4. It can be seen that
most classes in these images are well segmented.

Fig. 4. Image co-segmentation examples of MSRC-V2. Two images are shown for each
scene. The right images are the union of the selected meaningful segments of the same
class from the original images.

The segmentation accuracies for MSRC-v2 are listed in Tab. 2. Firstly, we
compare our complete version with the modified versions to test the effectiveness
of the spatial context (see (b) in Tab. 2) and the part-of relation (see (c)) on
MSRC-v2. Additionally, an appearance-only approach for image co-segmentation
without constructing the inside the same image edges of VRN is also performed
for comparisons (see (d)). It can be seen that the complete version of the pro-
posed approach performs best. Thereby, the part-of relation helps avoid over-
segmenting scene elements into smaller parts. Moreover, the spatial context and
the part-of relations can supplement with each other to improve the perfor-
mance.

We further compare our approach with the baseline algorithm [19], the re-
cent unsupervised object discovery method [12] and another two state-of-the-art
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multi-class co-segmentation approaches Jour [7] and Kim [10]. Although the
baseline [19] and [12] aim at category discovery, they also output segments of
each category. Thus comparisons are available using their public codes. Note
that we do not compare with [12] directly due to their priors of known scene
elements. We adopt their version without object-graph. Similarly, we use public
codes of [7] and [10], and then adjust parameters to get their best results. We
can see our method performs best in 6/13 classes and obtains competing results
over the others. The main reason is that most images consisting the rest 7 class-
es have few objects and large inter-class variability. Thus the methods based
on only appearance is sufficient to discriminate them. Note that [10] performs
relatively bad on MSRC-v2 due to their strong assumption for multi-class co-
segmentation. Thereby, the results validate that the spatial context and part-of
relation play a critical role in selecting meaningful segments.

Table 2. Accuracy comparisons on MSRC-v2.

Class Propose (b)Cont (c)Part (d)Appr Russ[19] Lee.[12] Jour[7] Kim.[10]

car 0.51 0.45 0.42 0.40 0.31 0.38 0.57 0.44

sky 0.81 0.75 0.79 0.73 0.67 0.75 0.80 0.52

Tree 0.57 0.51 0.54 0.47 0.57 0.48 0.61 0.49

Grass 0.56 0.56 0.55 0.51 0.49 0.53 0.57 0.50

Building 0.63 0.54 0.56 0.50 0.45 0.49 0.51 0.51

House 0.67 0.55 0.56 0.50 0.54 0.57 0.52 0.44

Road 0.61 0.59 0.58 0.57 0.41 0.44 0.60 0.51

Cow 0.53 0.46 0.51 0.51 0.40 0.54 0.54 0.49

Plane 0.49 0.47 0.42 0.40 0.38 0.44 0.45 0.31

Sheep 0.62 0.55 0.59 0.60 0.47 0.63 0.66 0.68

Bird 0.46 0.44 0.45 0.41 0.34 0.40 0.47 0.47

Dog 0.42 0.37 0.38 0.35 0.39 0.35 0.41 0.47

Boat 0.38 0.43 0.40 0.39 0.38 0.32 0.38 0.34

Segmentation accuracy on LabelMe and SUN One example image and
its segmentation results of every scene in LabelMe and SUN are shown in Fig. 5.
Although there are many object classes in these images, our method can well
discriminate them and successfully select meaningful segments.

For the scene images from LabelMe and SUN, we average the segmentation
accuracy of all the classes in each scene because of the large amounts of categories
in them. The results are illustrated in Tab. 3. We find the average accuracy
of MSRC-v2 is higher than those of LabelMe and SUN. This is due to the
fact that most of the scenes in MSRC-v2 have fewer categories and large inter-
class variability. From the comparison results, we can see our methods perform
overwhelmingly better that other methods. It follows our intuition that there
exists stable scene context in each scene and they can help much to discriminate
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Fig. 5. Scene image co-segmentation examples on LabelMe and SUN. From top to
bottom: Outdoor, Bathroom, Bedroom, Movie Theater, Static Office and Static Street.
The first column represents an example image, while the rest columns are the results
after co-segmentation. The selected segments are ranked in a decreasing order by their
overall importance scores from left to right. The blue subgraphs at the tail of each row
are only for alignment.

Table 3. Accuracy comparisons on LabelMe and SUN.

Scene Propose (b)Cont (c)Part (d)Appr Russ[19] Lee.[12] Jour[7] Kim.[10]

Office 0.35 0.29 0.22 0.20 0.25 0.30 0.29 0.24

Theater 0.44 0.40 0.34 0.29 0.31 0.34 0.35 0.31

Bathroom 0.45 0.39 0.38 0.39 0.35 0.32 0.33 0.39

Bedroom 0.39 0.32 0.30 0.25 0.30 0.29 0.30 0.38

Street 0.52 0.42 0.40 0.39 0.39 0.45 0.41 0.40

Indoor 0.44 0.35 0.32 0.30 0.36 0.30 0.37 0.33

different classes. To conclude, our method succeeds in combining appearance,
part of relation and the scene context to select meaningful segments.

Purity on MSRC-v2, LabelMe and SUN Purity scores of two datasets
are illustrated in Tab. 4. We find that our method succeeds in assigning consis-
tent class labels to each scene element category. Averagely, the purity scores on
LabelMe and SUN are lower than that on MSRC-v2 due to large intra-class vari-
ability. Since Jourlin [7]and Kim [10] perform pixel labeling, we calculate their
purity scores at pixel-level. Overall, it is consistent with segmentation accuracy
results and thus our method is better than other methods. To conclude, our
method can not only select meaningful segments for any image but also assign
consistent class labels to these segments of the same category.
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Table 4. Purity on MSRC-v2, LabelMe and SUN.

Dataset Propose (b)Cont (c)Part (d)Appr Russ[19] Lee.[12] Jour[7] Kim.[10]

MSRC-v2 0.79 0.63 0.64 0.50 0.51 0.77 0.80 0.77
LabelMe 0.52 0.45 0.40 0.28 0.34 0.46 0.46 0.41
SUN 0.58 0.44 0.45 0.40 0.37 0.47 0.45 0.47

7.5 Impacts of class number

The class number T in our aforementioned experiments is fixed to achieve the
best performance. In this section, we evaluate the influence of different T against
purity. From the results on three datasets (the front two images in Fig. 6), we
can see that the performance reaches the best when selecting the class number
as 1.4× Number of scene element categories.

Fig. 6. The first two graphs show the performances as the class number varies, while
the last two graphs correspond to the sparsity variations of VRN. In the temporary
context, the class number and K-nearest number of the horizontal axis is a percentage
to the amount of scene element categories and scene image number, respectively.

7.6 Impacts of the sparsity measurement of VRN

The sparsity of the VRN is controlled by K when constructing across images
edges. Generally, a large K can cause the complexity of topic-level random
walk, while a small K is insufficient to find enough matches during image co-
segmentation. The last two images of Fig. 6 show that the range [0.6, 0.8] is the
best choice. Moreover, too many matches can cause a negative impact. The main
reason is that too many extra intra-class votes will mislead topic-level random
walk to derive error importance scores.
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7.7 Running time

We implement our entire algorithm by Matlab and run on our machine with
Intel i3-2130 CPU@ 3.40GHz. When ”soups of segments” are available, the con-
struction of VRN and the selection of meaningful segments are relatively quick.
Without any optimization of codes, it takes about 10 mins to construct the over-
all VRN and 2 mins to select meaningful segments for each image. The overall
co-segmentation requires 44 min for convergence for 400 images comprising to-
tally 34000 segments. Compared to pixel-label methods, it is a valuable step that
benefits from our link analysis extension to Pagerank.

8 Conclusion

In this paper, we present a novel visual relation network to model the relationship
between scene segment candidates and perform topic-level random walk on the
network to exploit scene co-segmentation. The experiments on different datasets
show the effectiveness of our method. However, if unfortunately most of the
candidate segments are ”garbage” ones, the accuracy will be according decreased
during image co-segmentation. Potentially it can be avoided by enriching ”soup
of segments”. Our further work is to improve the accuracy of our unsupervised
scene image co-segmentation by including more class-level context cues.
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